
ObjectAgent for Robust Autonomous Control

Derek M. Surka

Princeton Satellite Systems
150 S. Washington St., Suite 201

Falls Church, VA 22046
dmsurka@psatellite.com

Abstract
The ObjectAgent system is being developed to create a
robust software architecture for autonomous control of
complex systems. Agents are used to implement all of the
software functionality and communicate through simplified
natural language messages. These agents have a set of basic
survival skills that monitor for internal software faults,
providing low-level fault detection and recovery. Higher-
level fault detection and recovery capabilities, including
modern artificial intelligence techniques, can easily be
incorporated into an ObjectAgent-based system.

Introduction.

Princeton Satellite Systems is developing the ObjectAgent
(OA) system to create an agent-based software architecture
that is designed for autonomous, distributed systems. The
system is being designed to deal with traditional real-time
software issues, such as memory management and
deadlock, and to provide a robust architecture that can be
used to implement modern fault detection techniques.

During the first phase of development, ObjectAgent was
prototyped in Matlab. A complete, GUI-based environment
was developed for the creation, simulation, and analysis of
multi-agent, multi-satellite systems. Collision avoidance
and reconfiguration simulations were performed for a
cluster of four satellites. ObjectAgent is now being ported
to C++ and the present architecture runs on a PowerPC 750
running Enea’s OSE operating system.

ObjectAgent is scheduled to fly on the Air Force’s
TechSat 21 satellite program in 2003. TechSat 21 is a
mission that will involve three satellites flying in formation
and acting as a “virtual” satellite. ObjectAgent will be used
to build two elements of the flight software, the Cluster
Manager and the Spacecraft Manager.

The Cluster Manager is a flight software package that
controls all spacecraft operations that require the
coordination of multiple spacecraft. It also provides
complete fault detection of all cluster operation related
systems. One of the primary functions of the Cluster
Manager is to perform relative control of the satellites in
the cluster. This will include relative stationkeeping and

Copyright © 2001, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

estimation of the cluster center-of-mass and the relative
positions of each satellite.

The Spacecraft Manager is a flight software package that
provides an autonomous replacement for the ground
operations team. It will control all aspects of spacecraft
operation including fault detection and redundancy
management. The Spacecraft Manager provides an
interface between the Cluster Manager and the rest of the
TechSat 21 flight software.

Although ObjectAgent is being originally developed for
distributed satellite systems, its applicability extends to
other distributed and complex systems. These include
systems of air, surface, and submersible vehicles, process
control, and network control and administration, to name a
few.

Previous papers have addressed the basic Matlab
architecture of ObjectAgent and have described the
research into agent organizations for distributed satellite
control (Schetter, Campbell and Surka 2000ab). Papers
have also described the basic C++ architecture (Surka,
Brito and Harvey 2001) as well as the application of
ObjectAgent to the TechSat 21 program (Zetocha et al.
2000). This paper focuses on the built-in features of
ObjectAgent that improve system robustness and autonomy
and describes some of the innovative fault detection and
recovery techniques currently under development.

The first section provides a general overview of the core
ObjectAgent system. This includes a discussion of the basic
survival skills possessed by agents. The second section
describes the approach being taken to address traditional
real-time software issues. The third section describes the
recently added layer of background health monitoring and
error handling. (See (Mueller, Surka and Lin 2001) for
more detailed information.) The final section describes the
new fault detection techniques currently under
development.

Overview of ObjectAgent

ObjectAgent is an agent-based, message-passing software
architecture that uses agents to implement all software
functionality. Agents are the basis of the system rather than
just a top layer. This is a key feature that distinguishes
ObjectAgent from other agent architectures. Each agent is a

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
ObjectAgent for Robust Autonomous Control

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Princeton Satellite Systems,33 Witherspoon Street,Princeton,NJ,08542

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

multi-threaded process and this architecture allows
decision-making, including fault detection and recovery
capabilities, to be built in at all levels of the software. This
in turn alleviates the need for extremely intelligent high-
level agents and simplifies the software interfaces.

A fundamental component of ObjectAgent is the flexible
messaging architecture that provides a reliable method for
agent-to-agent communication both on a single processor
and across networks. Each message has a content field
written in natural language that is used to identify the
purpose of the message and its contents. Natural language
was selected so that users could easily send messages or
commands to the agents as well as understand the messages
being sent between agents. The latter is important for
debugging purposes. Agent communication takes place
solely through messages; there is no shared memory
between agents. This ensures that agents can work together
even when they are not located on the same processor.

Two additional advantages of using agents for all
software functionality are increased flexibility and
robustness. Robustness is improved in ObjectAgent
because all agents are endowed with a set of basic survival
skills. Each agent has knowledge of its skills, inputs, and
outputs, and is capable of automatically configuring itself
upon launch. It will automatically seek out other agents
who can provide it with the inputs it needs as well as other
agents who need its outputs. In this sense, an ObjectAgent
system is self-organizing.

These same survival skills enable agents to be
dynamically added to a system to improve the system
capabilities or recover from a failure. The flexible and
reconfigurable messaging architecture provides a common
software interface that is vital to this ability to dynamically
add or change software. Since all software is implemented
as agents with the common messaging interface, all
software can be easily replaced or updated. This messaging
architecture also helps the system to recover from failures.

Another key feature of ObjectAgent is it allows the user
to specify the complexity of the agents and agent
organizations and does not constrain users to a predefined
notion of an agent. The user performs the decomposition of
the system into agents. This allows greater flexibility,
extensibility, upgradability, and compatibility with existing
systems.

Although artificial intelligence techniques are not built in
to the ObjectAgent core, the OA system architecture allows
AI techniques to be incorporated at any or all levels of the
software. Many tools are available to create agent skills.
For example, the system includes fuzzy logic, neural net,
system identification, learning control, expert system and
fault detection tools that the user can employ to solve his or
her distributed control problems. These techniques can
even be added after the system is in operation, which is not
possible with today’s flight systems. In addition, tools for
enabling agent organizations are included. This permits
agents to control the behavior of other agents.

Finally, special attention has been paid to developing a
system that is easy-to-use and simplifies the flight software

creation process. ObjectAgent is an integrated approach to
agent and flight software design, making extensive use of
simplified natural language and graphical user interfaces
(GUIs). This design environment not only simplifies the
agent creation process but also provides a common
interface to a number of advanced control and estimation
techniques.

Real-Time Software Issues

Since ObjectAgent is being implemented in real-time
control systems, the OA architecture must address
traditional real-time software issues such as process and
memory management and deadlock. It is not possible to
address these issues in the single-threaded prototype
Matlab environment and work on these issues has just
begun. This section describes how we propose to initially
address these issues in the C++ implementation of
ObjectAgent.

The initial C++ version of ObjectAgent will rely on the
real-time operating system (RTOS) to address some of
these issues. Enea’s OSE was selected as the first operating
system for ObjectAgent because OSE is a message based
RTOS designed for distributed systems and has many
features that lend itself to the ObjectAgent architecture.
These features include multi-threading, very good process
and memory management, and dynamic process loading.

Unlike traditional embedded operating systems, which
utilize lightweight tasks to partition complex activity and
semaphores to establish communications, a messaging
RTOS uses memory-protected processes and message-
based communications. This approach makes it easier to
conceptualize complex applications and distribute
programming responsibilities across large development
teams. The messaging RTOS model also makes it easier to
compartmentalize critical operations and data, thereby
enhancing reliability and security.

The OSE kernel provides very good process and memory
management. Processes may be grouped into blocks, each
with its own memory pool. While other kernels may
schedule tasks running in a shared memory environment,
OSE knows what resources each owns, including such
things as file descriptors, sockets, as well as all memory
resources, and supervises to avoid conflicts. If tasks die,
the kernel can reclaim the resources automatically.

OSE is a true message passing designed for distributed
processing applications and features full central processor
unit (CPU) or destination transparent messaging. The
messaging schema naturally supports fault tolerant and/or
high availability designs, in the following fashion:

Processes send messages to other processes;

Processes dynamically bind to other processes; and

OSE supervises all communications between processes;
if delivery fails, or a process dies (or is killed), all
connected processes are notified so they may take
corrective action. One corrective action could be to
establish a connection with a backup process (or board)

or messages may be dynamically re-routed to alternate
destinations.

Beyond the built-in protection provided by the operating
system, the ObjectAgent architecture will provide
additional features to address traditional real-time software
issues. One such feature is the inclusion in every OA-based
system of a “hall monitor” agent on each processor. This
agent will monitor all other agents running on the processor
to detect run-away processes and deadlock. The hall
monitor will then have the ability to shut down any such
problem agent. The details of the hall monitor agent are
still being worked out.

Health Monitoring and Error Handling

To create a robust, autonomous system, it is not enough to
only address the issues associated with developing real-
time software. The final system must also be able to detect
and recover from other subsystem faults. A background
layer of health monitoring and error handling has been
prototyped in the ObjectAgent Matlab environment to
enable systems to detect and recover from these faults

One of the most important tasks involved with
controlling a complex system is to provide information
about the system’s health. Satellites are an excellent
example—several important parameters, such as
temperature, fuel, attitude, and battery charge, are
constantly being stored in memory and telemetered down to
earth. In an agent-based system, where the computational
tasks are distributed, it is especially important to monitor
health. The ObjectAgent health monitoring architecture
accomplishes two goals. First, it enables the user to easily
define how agents conduct health monitoring. Second, it
carries out health monitoring in the background for an
agent network of any size.

The information provided by the health monitoring
architecture can be used by agents to detect existing or
potential problems in the system. Each agent has its own
health report, which is defined by the user. A health report
consists of three types of information: an overall health
number, a set of important parameters, and a descriptive
list of errors.

The health number of an agent is an instantaneous
measure of “how well” the agent is doing. The current
method of measuring the health number is to begin with a
nominal value of 100. If the agent experiences an error, its
health is reduced by the severity associated with that error.
When the agent recovers, its health is restored by the same
amount.

A more detailed set of information is included in the
important parameters list. All skill outputs of an agent are
available to be selected as important parameters. They are
measured at a specified rate, and their name, value, and
time of measurement are included in the health report.

The final element of the health report is a list of errors.
Each time an agent detects an error, a packet of relevant
information is stored in the agent memory. When it is time

to send the next health report, any new error information is
included.

Once a network of agents is established, an easy-to-use
HealthMonitor GUI enables the designer to specify the
method of monitoring health among agents. It should be
noted that both external parameters (e.g. temperature
measurements) and internal parameters (e.g. time to run an
algorithm) may be monitored. What the designer decides to
do with this information is, of course, case specific.

The fault detection architecture for ObjectAgent was
designed with two objectives in mind: 1) to provide a
flexible framework to detect, report, and recover from
errors in a distributed agent environment; and 2) to
minimize the amount of required user-intervention. The
user is required to supply the necessary algorithms for
detection and recovery. The ObjectAgent software then
uses this information to implement the error handling.

The main element of the fault detection architecture is an
error. In ObjectAgent, an error is defined as follows:

A specific occurrence, with a unique name, that
may be detected and recovered from in a
distinct manner.

There are three primary actions surrounding the occurrence
of an error: detection, recovery, and reporting. In an agent-
based framework, once an error is detected, that knowledge
is initially isolated to the original agent. The recovery may
be performed by the original agent or by an outside agent,
providing it has been informed. ObjectAgent uses its
message passing architecture to distribute error information
to all appropriate agents, thereby allowing a distributed
recovery approach to be used.

The types of errors which may occur are divided into 2
categories: Input Errors and Skill Errors. An Input Error is
any error that has to do with a specific input to a skill,
while a Skill Error is an error that occurs while a skill
updates. For example, “No Input” is a generic Input Error
that occurs when an input is expected, but is not received.
The default action is to seek for a new source. The
detection and recovery algorithms for this error have been
written into an FDIR function, which may be applied to any
input of any skill in any agent of the system.

Errors may be either environmental or software oriented
in nature. An error such as “Bad Signal” or “High Temp”
would be environmental, whereas “No Input” is software
oriented because it refers to a skill not receiving an
expected input from another software agent.

Finally, the user may select which agents are informed
when an error occurs. It is useful to report errors to other
agents for two reasons. First, other agents are likely to be
affected by an error. If they are informed, then they have a
chance to minimize the negative impact that the error may
have on them. Second, it may be useful for other agents to
assist in correcting the error.

The following example, which is used in the
ObjectAgent Tutorial, demonstrates the error handling
features of ObjectAgent. A simple network of three agents
is simulated. The structure is illustrated in Figure 1.

DataAgent1 and DataAgent2 are identical; each possesses
the skill “DataSkill”, which simply calculates the system
time and sends it as an output called “data”. PlottingAgent
has the skill “PlottingSkill”, which plots the input “data” as
a function of time. Prior to running the simulation,
DataAgent1 is defined as PlottingAgent’s source of “data”.

The results of the simulation are shown in Figure 2. The
goal is to illustrate that the error handling architecture
works properly by using the “No Input” FDIR function. If
the “No Input” error is detected by PlottingAgent, it should
seek for a new source, and find that source in DataAgent2.
PlottingSkill is coded such that, when the source of “data”
changes, it plots “o” instead of “x”.

At 10 seconds DataAgent1 is failed, preventing
PlottingAgent from receiving “data”. PlottingAgent detects
the “No Input” error at 12 seconds (due to a 2 second
delay), and reduces its health by the severity of the error,
which was set to 50. After 4 seconds pass, the recovery
algorithm is shown to be successful when “data” is received
from DataAgent2.

Although this is an extremely simple example, it
illustrates the ease with which error handling may be
executed. It also demonstrates the dynamic
reconfigurability of agent communications that is built-in to

the core ObjectAgent architecture. The detection and
recovery scheme of this particular error may be applied to
any input and more advanced schemes can easily be
implemented. Advanced fault detection techniques
currently under development at PSS are described in the
following section.

Advanced Fault Detection Techniques

All fault detection in ObjectAgent is performed by agents
and an agent’s functionality is determined by the skills that
it possesses. Therefore, fault detection is incorporated into
ObjectAgent by creating special fault detection skills. Both
traditional (e.g. if…then…else constructs) and advanced
fault detection techniques can easily be incorporated into
agent skills. The system currently includes fuzzy logic,
neural net, system identification, and expert system tools
that the user can employ for fault detection. A number of
additional advanced techniques are also under
development.

Decision making is centralized using the Autonomous
Dynamic Algorithmic Expert System (ADAXS). ADAXS
is an expert system that is designed to handle time-varying
data and to apply algorithms (for example an FFT) as part
of its decision making process. It can be thought of as a
combination of expert system and mathematical language
such as Mathematica or Matlab. ADAXS is designed to
mimic the behavior of people when they are trying to solve
problems.

Data is loaded into ADAXS using standard OA
messages. The datafield may contain a string object or
Matrix object plus all standard C/C++ data types. New data
can be appended to datafields using messages. Decision
making involves processing the data using filters and other
transforms and then making a decision based on the
transformed data. The decision making process uses
production rules and the rules make take any one of several
forms including if...then...else and Fuzzy logic constructs.

Additional tools exist for clarifying input data. For
example, for fault detection, Detection Filters are available.
Detection filters are fixed-gain Kalman Filters with the gain
matrix designed to make the filter residuals sensitive to
actuator and sensor failures and plant model changes. The
residuals are normally zero unless a failure occurs.

Another technique under development at Dartmouth
University is Prof. Minh Phan’s Interaction Matrix
Formulation for actuator failure detection. This formulation
allows the software to detect actuator failure immediately,
based upon past and current input/output data and an
efficient filter. This software is robust with respect to
measurement noise, outside disturbances, and errors in
system modeling. Furthermore, it uses a minimum of
computational resources and applies to single input, single
output systems as well as multi-input, multi-output systems.

PlottingAgent

DataAgent1 DataAgent2

Level 2

Level 1

Figure 1: Simulated Network

Figure 2: Health and “data” of PlottingAgent when
“No Input” error occurs

Conclusions

In summary, the ObjectAgent software architecture is
designed to increase the autonomy of complex distributed
systems. It does so by providing a robust, agent-based
software architecture that enables advanced fault detection
techniques to easily be added to real-time systems. The
message-passing operating system addresses many of the
traditional real-time software issues such as process and
memory management. Each agent has a set of basic
survival skills that creates a robust communications
network. A basic fault detection architecture has been
created for ObjectAgent that facilitates both health
monitoring and error handling for an agent network of any
size. Advanced fault detection techniques, such as the
ADAXS and Interaction Matrix Formulation systems under
current development, can easily be incorporated into this
architecture.

Acknowledgments

This work is supported by two United States Air Force
SBIR Phase II contracts from the Surveillance and Control
Division of the Air Force Research Laboratory's Space
Vehicles Directorate. The contract numbers are F29601-
99-C-0029 and F29601-00-C-0025 and the program
manager is Paul Zetocha.

References

Mueller, J. B., D. M. Surka, and J. J. Lin. 2001. A
Background Layer of Health Monitoring and Error
Handling for ObjectAgent. To be Presented at FLAIRS
2001. Key West, Florida.

Schetter, T. P., M. E. Campbell, and D. M. Surka. 2000a.
Comparison of Multiple Agent-based Organizations for
Satellite Constellations. In Proceedings of FLAIRS 2000.
Orlando, Florida.

Schetter, T. P., M. E. Campbell, and D. M. Surka. 2000b.
Multiple Agent-Based Autonomy for Satellite
Constellations. In Proceedings of the Second International
Symposium on Agent Systems and Applications. Zurich,
Switzerland.

Surka, D. M., M. C. Brito, and C. G. Harvey. 2001.
Development of the Real-Time ObjectAgent Flight
Software Architecture for Distributed Satellite Systems. To
be Presented at IEEE Aerospace Conference 2001. Big
Sky, Montana.

Zetocha, P., L. Self, R. Wainwright, R. Burns, M. Brito,
and D. Surka. 2000. Command and Control of a Cluster of
Satellites. IEEE Intelligent Systems. November/December
2000.

